

RELATÓRIO TÉCNICO DE MONITORAMENTO EM EMISSÕES ATMOSFÉRICAS

ACTECH - ALUMINA CHEMICAL TECHNOLOGY LTDA OURO PRETO-MG

CHAMINÉ DOS FORNOS A/B

PROGRAMA DE MONITORAMENTO – 2024 MENSAL

Execução

Março de 2024

RELATÓRIO DE ENSAIO №::	EA102-24
DATA DE EMISSÃO DO RELATÓRIO:	22/04/2024

LABORAT	LABORATÓRIO RESPONSÁVEL PELA EXECUÇÃO DAS AMOSTRAGENS E ENSAIOS									
Nome do laboratório:	Ecoar Monitorame		ndereço do boratório:	Rua Hamacek, 122 - Lucília - João Monlevade - MG						
CNPJ:	05.770.537/0001-	54 e-	mail:	ecoar@ecoarma.com.br						
EQUIPE TÉCNICA DA ECOAR MONITORAMENTO AMBIENTAL RESPONSÁVEL PELOS TRABALHOS DE CAMPO										
	NOME		FUNÇÃO							
V	'INICIUS BARBOZA S	SILVA	COLETOR DE AMOSTRA III							
		NICA DA ECOAR M VEL PELA ELABO								
NO	OME	FUNÇ	ÃO	REGISTRO PROFISSIONAL						
JUCÉLI	O BRUZZI	GERENTE T	ÉCNICO	CRQ MG nº. 02.406.382 - 2ª Região CREA-MG: 200472/D						

	NOME E INFORMAÇÕES DE CONTATO DO CLIENTE										
Razão Social:	Actech - Alumina Chemical Technology LTDA	Endereço:	Av. Américo René Gianetti, Nº S/N, Saramenha, Ouro Preto-MG, CEP: 35400-								
CNPJ:	17.720.994/0001-13		000								
e-mail:	bruno.mapa@actechbr.com	Telefone:	(31) 3559 9130								
	RESPONSÁVEL PELO ACOMPAN	NHAMENTO P	OR PARTE DO CLIENTE								
	Bruno Mapa Meio Ambiente										

LOCAL DE REALIZAÇÃO DAS ATIVIDADES DE LABORATÓRIO									
Amostragens e ensaios de campo:	Ensaios de laboratório:								
No endereço do cliente, acima.	Em nossas instalações permanentes, situada à Rua Hamacek, 122 Lucília, João Monlevade - MG. CEP 35.930-240								

1. INTRODUÇÃO

Este relatório vem apresentar os resultados da campanha de amostragens e análises realizada em chaminés da unidade da Actech - Alumina Chemical Technology LTDA, localizada no município de Ouro Preto-MG. São apresentados os resultados das medições realizadas no mês de março de 2024. A relação de ponto e parâmetros monitorados está contida no tópico Resultados.

2. METODOLOGIA EMPREGADA

2.1. Métodos de Referência

ABNT NBR 11966:1989 Determinação da Velocidade e Vazão dos Gases em Chaminés e Dutos de

Fontes Estacionárias.

ABNT NBR 11967:1989 Determinação da Umidade em Chaminés e Dutos de Fontes Estacionárias

ABNT NBR 12019:1990 Determinação de Material Particulado em Chaminés e Dutos de Fontes

Estacionárias

ABNT NBR 12.021:2017 Determinação de Dióxido de Enxofre, Trióxido de Enxofre e Névoas de Ácido

Sulfúrico, em Chaminés e Dutos de Fontes Estacionárias.

CETESB L9.210:1990 Análise dos Gases de Combustão Através do Aparelho Orsat: Método de

Ensaio

CETESB L9.221:1990 Dutos e Chaminés de Fontes Estacionárias - Determinação dos Pontos de

Amostragem

EPA CTM-030:1997 Determination of Nitrogen Oxides, Carbon Monoxide, and Oxygen Emissions

from Natural Gas-Fired Engines, Boilers and Process Heaters Using Portable

Analyzers

2.2. Estratégias de Amostragem

CHAMINÉ DOS FORNOS A/B									
	Dimensões Físicas		Coordenadas	Geográficas	Quantidade de Pontos e Eixos				
	Chaminés Chaminés Retangulares Output of Copyrights Output of Co					Nº. Total de Pontos:			
oxin Inxo			1 Sm			Nº. de Eixos:	2		
			AB		-20.398037° -43.518989°	Registro Fotográfico			
AB (m):			-						
BC (m):	>15,00	BC (m):	-						
Ø C (m)	4.00	C (m):	-		1				
Ø C (m): 1,	1,20	L (m):	-						

Legenda:

- AB: Distância em metros à jusante da última singularidade.
- BC: Distância em metros à montante da última singularidade.
- ØC: Diâmetro da chaminé, em metros
- C: Comprimento da chaminé, em metros
- L: Largura da chaminé, em metros

2.3. Adições, desvios ou exclusão aos métodos de amostragem e ensaio

Não aplicável.

3. PARÂMETROS OPERACIONAIS

Nota: As informações contidas neste tópico foram fornecidas pelo cliente durante a realização das amostragens em campo.

3.1. CHAMINÉ DOS FORNOS A/B

A planta opera com um filtro eletrostático para os fornos A e B, no entanto, os gases e particulados gerados durante o processo de operação, dos 02 fornos são direcionados para a mesma chaminé.

A chaminé do lavador de gases do Forno A foi desativada, devido a mudança no processo de fabricação de Alumina, não há mais a utilização de Cloro no processo, sendo utilizada a produção da Alumina por Chamote.

A mudança trouxe benefícios tanto no aspecto de segurança do trabalho quanto ambiental.

Durante o período de monitoramento, apenas o Forno A estava em operação, o processo se manteve estável e em condições normais de operação.

Parâmetros de Produção:

Tipo de Alumina produzida: SR7 e Esp Dust

Produção de Alumina (t/h): 0,82

4. RESULTADOS

CHAMINÉ DOS FORNOS A/B - Material Particulado (MP), Dióxido	CHAMINÉ DOS FORNOS A/B - Material Particulado (MP), Dióxido de Enxofre (SO2)										
PARÂMETROS	UN.	LQ	AM01	AM02	AM03						
N° DA AMOSTRA	-	-	5062/24-01	5062/24-02	5062/24-03						
DATA DAS AMOSTRAGENS / ENSAIOS DE CAMPO	-	-	22/03/24	22/03/24	22/03/24						
DATA DO RECEBIMENTO DAS AMOSTRAS	-	-	16/04/24	16/04/24	16/04/24						
DATA DOS ENSAIOS DE LABORATÓRIO	-	-	18/04/24	18/04/24	18/04/24						
HORÁRIO INICIAL DA AMOSTRAGEM	hh:mm	-	08:40	09:47	10:55						
DURAÇÃO DA AMOSTRAGEM	min	-	60,0	60,0	60,0						
TEMPERATURA	°C	1	135	135	136						
UMIDADE	%	0,01	7,26	7,48	7,50						
VELOCIDADE	m/s	1,00	9,74	9,66	9,71						
VAZÃO (condições da chaminé)	m³/h	300	39.664	39.310	39.546						
VAZÃO (condições normais base seca)	Nm³/h	300	21.511	21.299	21.365						
DIÓXIDO DE CARBONO	%	0,2	2,0	2,4	2,2						
OXIGÊNIO	%	0,2	17,3	16,7	16,9						
MONÓXIDO DE CARBONO	%	0,2	< 0,2	< 0,2	< 0,2						
FATOR ISOCINÉTICO	%	-	99	99	99						
CONCENTRAÇÃO DE MP	mg/Nm³	2,0	20,8	41,6	73,9						
TAXA DE EMISSÃO DE MP	kg/h	0,0428	0,4476	0,8850	1,5796						
CONCENTRAÇÃO DE SO2	mg/Nm³	1,2	< 1,2	< 1,2	< 1,2						
TAXA DE EMISSÃO DE SO2	kg/h	0,0257	< 0,0257	< 0,0257	< 0,0257						
TAXA DE EMISSÃO DE MP	kg/Ton	-	0,5459	1,0793	1,9263						

CHAMINÉ DOS FORNOS A/B - Óxidos de Nitrogênio (NOx)										
PARÂMETROS	UN.	LQ	AM01	AM02	AM03					
N° DA AMOSTRA	-	-	5063/24-01	5063/24-02	5063/24-03					
DATA AMOSTRAGEM / ENSAIO	-	-	22/03/24	22/03/24	22/03/24					
HORÁRIO AMOSTRAGEM / ENSAIO	hh:mm	-	12:01	13:11	14:20					
CONCENTRAÇÃO DE NOx	mg/Nm³	2	57	59	67					
TAXA DE EMISSÃO DE NOx	kg/h	0,0428	1,229	1,270	1,434					

5. GRÁFICOS COMPARATIVOS

Gráfico 01 - CHAMINÉ DOS FORNOS A/B - Material Particulado (MP)

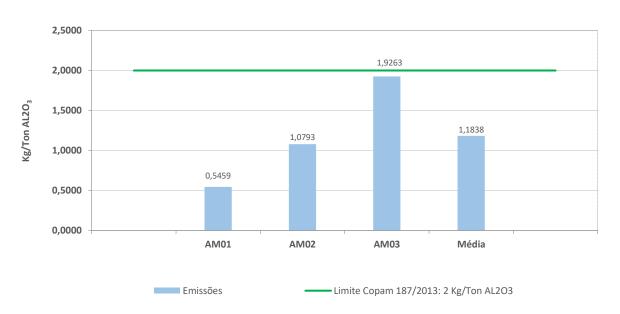
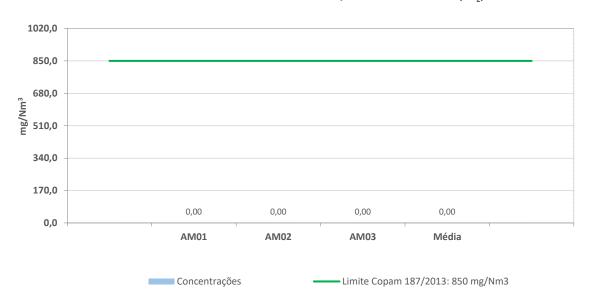



Gráfico 02 - CHAMINÉ DOS FORNOS A/B - Dióxido de Enxofre (SO₂)

(*) Resultados expressos graficamente como zero, correspondem ao LQ do método

6. DISCUSSÃO DOS RESULTADOS

Os resultados das concentrações da(s) fonte(s) monitorada(s) foram comparados à legislação estadual que fixa limites de emissão para poluentes atmosféricos.

A legislação estadual atualmente em vigor no Estado de Minas Gerais é a Deliberação Normativa nº 187 de 19 de setembro de 2013 do COPAM - Conselho Estadual de Política Ambiental, que estabelece condições e limites máximos de emissão de poluentes atmosféricos para fontes fixas.

A comparação dos resultados obtidos nessa campanha de amostragens pode ser visualizada na Tabela 6.1 abaixo:

Tabela 6.1 - Comparação do resultado com o limite máximo de emissão									
Fonte	Parâmetro	Padrão de Emissão DN 187:2013	Unidade	Médias das Amostragens					
	MP	2,0 (1)	Kg/Ton AL ₂ O ₃	1,1838					
CHAMINÉ DOS FORNOS A/B	SO ₂	850 ⁽¹⁾	mg/Nm³	< 1,2					
	NOx	NA ⁽¹⁾	mg/Nm³	61					

⁽¹⁾ DN 187:2013 - Anexo VI: (TABELA VI - Condições e LME para poluentes atmosféricos provenientes de indústrias de alumínio primário - Forno de calcinação de hidrato).

Conforme disposto no Anexo XVIII, item A-5 da Deliberação Normativa nº. 187/2013 do COPAM, na hipótese de que duas ou mais fontes de emissão façam o lançamento final por meio de duto ou chaminé comum, os limites das medições devem ser corrigidos conforme item II: para outras fontes que não as geradoras de calor, para as quais o fator de ponderação é a vazão dos Gases.

NA= não aplicável.

Se compararmos os resultados obtidos nesta campanha de monitoramento com a Legislação Estadual vigente, definida pela Deliberação Normativa nº. 187 de 19 de setembro de 2013 do COPAM, conclui-se que, os parâmetros passíveis de comparação **estão em conformidade** com os limites definidos pela Legislação em questão.

ANEXO A - REGISTROS DE AMOSTRAGEM

				PLANILI	HA DE AMOS	TRAGEM ISO	CINÉTICA E	M CHAMINÉ	İs				
CLIENTE		LUMINA CHEN		OLOGY LTDA	4					DATA		22/03/24	
PROCESSO	CHAMINÉ D	OS FORNOS A								AMOSTRAG		1	
Hora Inicial	08:40	PATM (mmHg	9)	665,0	Ø Chaminé (m)		1,20	Ø Boquilha (r	nm)	8,09	Vaz. Inicial (L		0,2
Hora Final	09:42	FC Pitot's		0,8051	Comprimento -	C (m)	-	Flanges (cm)		15	Vaz. Final (L/	min)	0,0
Duração (min)	60,0	FC gasômetro	•	0,9960	Largura - L (m)	(dist. Pontos)	-	Nº Pontos		24	Nº de Pontos	Nº de Pontos p/ eixo 12	
EQUIPAMENTOS U	JTILIZADOS:	AMOST	RADOR	ECOAI003	GASÔMETRO	ECO	GA045	PITOTS	ECO	TP020	BOQUILHAS	C2	2.11
DISTRIBUIÇÃ	ÃO DE PONTOS	(cm)	TEMPO	VOLUME		PRESSÃO (mmH ₂ 0	0)	VÁCUO		TE	MPERATURAS ((°C)	
PONTO	Dist. Ptos	Dist. Ptos (Retangular)	min	m³	ΔP	ΔН	PE	in Hg	CHAMINÉ	ENTRADA	SAIDA	FILTRO	BORB.
	(Circular	(Retangular)			ļ.						ļ		
			0,00	860,2022		DADOS D	E CAMPO				,	,	
1	17,5	-	2,50	860,2487	4,0	32,0	-3,0	1,0	130	32	29	120	17
2	23,0	-	5,00	860,2952	4,0	32,0	-3,0	1,0	130	32	29	124	17
3	29,2	-	7,50	860,3468	5,0	39,7	-3,0	1,0	135	33	30	125	17
4	36,2	-	10,00	860,3984	5,0	39,8	-3,0	1,0	135	34	31	126	18
5	45,0	-	12,50	860,4490	6,0	47,5	-3,0	1,0	137	34	31	128	18
6	57,7	-	15,00	860,4996	6,0	47,5	-3,0	1,0	137	34	31	124	18
7	92.3		17.50	860.5556	7.0	55.1	-3.0	1.0	138	33	30	122	18
8	105.0	-	20.00	860,6116	7.0	55.1	-3.0	1.0	138	33	30	118	19
			-,		,-								-
9	113,8	-	22,50	860,6622	6,0	47,3	-3,0	1,0	136	32	29	120	19
10	120,8	-	25,00	860,7128	6,0	47,3	-3,0	1,0	136	32	29	118	20
11	127,0	-	27,50	860,7644	5,0	39,4	-3,0	1,0	136	32	29	122	20
12	132,5	-	30,00	860,8160	5,0	39,7	-3,0	1,0	135	33	30	124	21
13	17,5	-	32,50	860,8625	4,0	32,1	-3,0	1,0	130	33	30	126	21
14	23,0		35,00	860,9090	4,0	32,1	-3,0	1,0	130	33	30	128	22
15	29,2		37,50	860,9606	5,0	39,7	-3,0	1,0	136	34	31	120	22
	+		40,00	861,0112	6,0			-	137	34	31	122	23
16	36,2					47,5	-3,0	1,0					
17	45,0	-	42,50	861,0618	6,0	47,3	-3,0	1,0	136	32	29	119	23
18	57,7	-	45,00	861,1178	7,0	54,9	-3,0	1,0	138	32	29	116	22
19	92,3	-	47,50	861,1684	6,0	46,9	-3,0	1,0	138	31	28	110	22
20	105,0	-	50,00	861,2244	7,0	55,1	-3,0	1,0	137	32	29	100	21
21	113,8	-	52,50	861,2750	6,0	47,5	-3,0	1,0	136	33	30	110	21
22	120,8		55,00	861,3256	6,0	47,4	-3,0	1,0	137	33	30	116	20
23	127,0		57,50	861,3772	5,0	39,8	-3,0	1,0	135	34	31	120	20
24	132,5	l .	60,00	861,4288	5,0	39,7	-3,0	1,0	135	33	30	118	20
25	102,0		00,00	001,4200	0,0	55,1	0,0	1,0	100		- 55	110	
25	-	Ļ.,	-			-							
		Kt -	10,630	1,2266	5,5	43,9	-3,0	1,0	135,3	3	11	120	20
			204 25 400	A CONDENSA		DOS DE LABOR	ATORIO	I		****	MOLECULA	20504	
200		MAS			DA	DIFFDENCA (-)		-					
BORB	BULHADORES		Mi (g)	Mf (g)		DIFERENÇA (g)		-		ONENTE	%	Mx . Bx	relatório
	01		270,50	267,40		-3,10		-		O ₂	2,0	0,88	2,00
	02		274,80	297,00		22,20		4		O ₂	17,3	5,54	17,30
	03		272,40	289,00		16,60		4	CO (ppm):	22	0,0022	0,00	< 0,2
	04		548,00	573,00		25,00			ŀ	H ₂	0,0	0,00	< 0,2
	05					0,00			1	N ₂	80,7	22,60	80,70
	06					0,00				Σ (g/gmol)		29,01	-
	07					0,00]		Nota	: ppm ÷ 10.00	0 = %	
	08					0,00							
								Volume A	Acetona - reci	iperação amo	ostra (mL)	100	
	Massa de á	gua coletada	(g)			60,70]				1	
									Matriz C Retan	haminés gulares	Flanges -	х	Pontos -
									1		!		4
DIMENSÕES F	DIMENSÕES FÍSICAS OBSERVAÇÕES								RESPON	ISÁVEIS			
AB (m)	AB (m) 4,80 -]	VINICIU	S SILVA			
BC (m)) 15,00 -						TÉCNICO RESP. PELA AMOSTRAGEM						
Ø (m)	1,20		TEMP	ERATURA DA	A SAÍDA DO COI	NDENSADOR DE	DIOXINAS/SV	OC (°C)			MARILENE	RODRIGUES	
C (m)	-	T1	-	T2	-	T3	-	T4	-	CONF	ERÊNCIA E TRANS	SPOSIÇÃO DOS	DADOS
L (m)	-		VE	RIFICAÇÃO D	A BALANÇA CO	M PESO PADRĀ	O (tolerância:	± 5g)			JUCÉLIO	BRUZZI	
N° Pontos sugerido	24	Balança:	ECOBL020	Pesc	Padrão:	ECOPP016	Resulta	ido (g):	100,0	1	APROVAÇÃO DO	OS RESULTADOS	S
SISTEMA DE GESTÃO						1							Página 01 de 02

EA102-24 FO-56-06 Página 9 de 16

PLANILHA DE AMOSTRAGEM ISOCINÉTICA EM CHAMINÉS

	LIENTE ACTECH - ALUMINA CHEMICAL TECHNOLOGY LTDA DATA 22/03/24												
CLIENTE PROCESSO				OLOGY LTDA								22/03/24	
Hora Inicial	09:47	PATM (mmHg		665.0	Ø Chaminé (m)		1.20	Ø Boquilha (r		AMOSTRAG 8.09	Vaz. Inicial (L		0.2
Hora Final	10:49	FC Pitot's	37	0.8051	Comprimento -		1,20	Flanges (cm)	,	15	Vaz. Final (L/		0.0
Duração (min)	60,0	FC gasômetro	2	0,9960	Largura - L (m)			Nº Pontos				12	
Durayao (min)	00,0	r o gasomene		0,0000	cargara c (iii)	(diot. 1 oritos)		TY T GINOD	24 No. de Louros frienzo 15				
EQUIPAMENTOS U	JTILIZADOS:	AMOST	RADOR	ECOAI003	GASÔMETRO	ECO	3A045	PITOTS	ECO	TP020	BOQUILHAS	C2	.11
DISTRIBUIÇ	ÃO DE PONTOS	(cm)	TEMPO	VOLUME		PRESSÃO (mmH ₂	0)	VÁCUO		TE	MPERATURAS ((°C)	
PONTO	Dist. Ptos (Circular	Dist. Ptos (Retangular)	min	m³	ΔP	ΔH	PE	in Hg	CHAMINÉ	ENTRADA	SAIDA	FILTRO	BORB.
	Circulai	(Retailgulai)									I		ı
			0,00	861,4288		DADOS L	E CAMPO						
1	17,5	-	2,50	861,4752	4,0	32,0	-3,0	1,0	130	32	29	120	17
2	23,0	-	5,00	861,5268	5,0	39,4	-3,0	1,0	136	32	29	122	17
3	29,2	-	7,50	861,5774	6,0	47,6	-3,0	1,0	135	33	30	123	17
4	36,2	-	10,00	861,6282	6,0	47,6	-3,0	1,0	136	34	31	126	17
5	45,0	-	12,50	861,6842	7,0	55,4	-3,0	1,0	137	34	31	128	18
6	57,7	-	15,00	861,7348	6,0	47,6	-3,0	1,0	136	34	31	126	18
7	92,3	-	17,50	861,7864	5,0	39,8	-3,0	1,0	135	34	31	124	18
8	105,0	-	20,00	861,8380	5,0	39,8	-3,0	1,0	135	34	31	120	18
9	113,8	-	22,50	861,8845	4,0	32,2	-3,0	1,0	130	34	31	119	19
10	120,8	-	25,00	861,9310	4,0	32,2	-3,0	1,0	130	34	31	117	19
11	127,0	-	27,50	861,9826	5,0	39,5	-3,0	1,0	135	32	29	118	19
12	132,5	-	30,00	862,0332	6,0	47,3	-3,0	1,0	136	32	29	120	20
13	17,5	-	32,50	862,0892	7,0	55,3	-3,0	1,0	137	33	30	122	20
14	23,0	-	35,00	862,1398	6,0	47,7	-3,0	1,0	134	33	30	124	21
15	29,2	-	37,50	862,1958	7,0	55,1	-3,0	1,0	137	32	29	126	21
16	36,2	-	40,00	862,2474	5,0	39,5	-3,0	1,0	135	32	29	128	22
17	45,0	-	42,50	862,2990	5,0	39,7	-3,0	1,0	136	34	31	126	22
18	57,7	-	45,00	862,3496	6,0	47,6	-3,0	1,0	136	34	31	125	21
19	92,3		47,50	862,4002	6,0	47,5	-3,0	1,0	137	34	31	124	20
20	105,0		50,00	862,4562	7,0	55,3	-3,0	1,0	138	34	31	122	20
21	113,8	-	52,50	862,5068	6,0	47,5	-3,0	1,0	137	34	31	124	21
22	120,8		55,00	862,5584	5,0	39,7	-3,0	1,0	136	34	31	126	21
23	127,0	-	57,50	862,6049	4,0	32,1	-3,0	1,0	130	33	30	128	22
24	132,5	-	60,00	862,6514	4,0	32,0	-3,0	1,0	130	32	29	130	22
25	-	Kt =	-			-							
			10,630	1,2226	5,5	43,3 DOS DE LABOR	-3,0	1,0	134,8		52	124	20
		МФ	SSA DE ÁGUA	A CONDENSA		POS DE LABOR	ATURIU			MASSAM	A MOLECULAI	R SECA	
BORE	BULHADORES	них	Mi (g)	Mf (g)		DIFERENÇA (g	1	1	COMP	ONENTE	%	Mx . Bx	relatório
50.11	01		270,60	262,00		-8,60		1		O ₂	2,4	1,06	2,40
	02		274,90			1		D ₂	16,7	5,34	16,70		
	03		272,30	290,20	17,90		1	CO (ppm):	24	0,0024	0,00	< 0,2	
	04		573,00	603,00	30,00		1	ŀ	H ₂	0,0	0,00	< 0,2	
	05 0,00			1	N ₂	80,9	22,65	80,90					
	06					0,00				Σ (g/gmol)		29,05	
	07	·				0,00				Nota	: ppm ÷ 10.00	0 = %	
	08					0,00							
09 0,00 Volume Acetona - recuperação amostra (ostra (mL)	100								
	Massa de á	gua coletada	(g)			62,40]			ı	1	
										haminés gulares	Flanges	x	Pontos

matriz Chammes	-	l	
Retangulares	-	х	-
	RESPON	ISÁVEIS	

DIMENSÕES FÍ	DIMENSÕES FÍSICAS			OBSERVAÇÕES					RESPONSÁVEIS	
AB (m)	4,80	-							VINICIUS SILVA	
BC (m)	15,00									TÉCNICO RESP. PELA AMOSTRAGEM
Ø (m)	1,20				MARILENE RODRIGUES					
C (m)	-	-								CONFERÊNCIA E TRANSPOSIÇÃO DOS DADOS
L (m)	-		TEMPERATURA DA SAÍDA DO CONDENSADOR DE DIOXINAS/SVOC							JUCÉLIO BRUZZI
N° Pontos sugerido	24	T1	-	T2	-	T3 - T4 -			APROVAÇÃO DOS RESULTADOS	

SISTEMA DE GESTÃO DA QUALIDADE - ECOAR MONITORAMENTO AMBIENTAL FO-01-08

PLANILHA DE AMOSTRAGEM ISOCINÉTICA EM CHAMINÉS

CLIENTE	40TF011 ::	CTECH - ALUMINA CHEMICAL TECHNOLOGY LTDA								DATA		22/03/24				
PROCESSO				OLOGY LTDA	ļ.											
Hora Inicial	10:55	PATM (mmHg		665.0	Ø Chaminé (m)		1.20	Ø Boquilha (r		AMOSTRAG 8.09	Vaz. Inicial (L		0.2			
Hora Final	11:57	FC Pitot's	3/	0.8051	Comprimento - 0	? (m)	1,20	Flanges (cm)	,	15	Vaz. Final (L/		0.0			
Duração (min)	60,0	FC gasômetro	2	0,9960					•		Nº Pontos		24			12
Daração (mm)	00,0	r o gasomene		0,0000	cargara c (m)	(diot. 1 dillos)		IV I GINOS			r de i dinos	pr cixo				
EQUIPAMENTOS UT	TILIZADOS:	AMOST	RADOR	ECOAI003	GASÔMETRO	ECO	3A045	PITOTS	ECO	TP020	BOQUILHAS	C2	.11			
DISTRIBUIÇĂ	O DE PONTOS	(cm)	TEMPO	VOLUME	P	RESSÃO (mmH ₂ 0	D)	vácuo		TE	MPERATURAS ((°C)				
PONTO	Dist. Ptos (Circular	Dist. Ptos (Retangular)	min	m³	ΔP	∆H	PE	in Hg	CHAMINÉ	ENTRADA	SAIDA	FILTRO	BORB.			
	Concention	(recunquiar)	•				E CAMPO				'					
			0,00	862,6514		DADOS L	E CAMPO									
1	17,5	-	2,50	862,7030	5,0	39,4	-3,0	1,0	136	32	29	120	17			
2	23,0	-	5,00	862,7546	5,0	39,6	-3,0	1,0	136	33	31	124	17			
3	29,2	-	7,50	862,8012	4,0	31,8	-3,0	1,0	135	33	31	126	17			
4	36,2	-	10,00	862,8476	4,0	31,7	-3,0	1,0	135	32	30	128	17			
5	45,0	-	12,50	862,8992	5,0	39,6	-3,0	1,0	136	33	31	125	18			
6	57,7	-	15,00	862,9508	5,0	39,8	-3,0	1,0	136	34	32	123	18			
7	92,3	-	17,50	863,0014	6,0	47,6	-3,0	1,0	137	34	32	124	18			
8	105,0	-	20,00	863,0520	6,0	47,6	-3,0	1,0	137	34	32	126	18			
9	113,8	-	22,50	863,1080	7,0	55,4	-3,0	1,0	138	34	32	125	18			
10	120,8	-	25,00	863,1640	7,0	55,0	-3,0	1,0	138	32	30	122	19			
11	127,0	-	27,50	863,2146	6,0	47,3	-3,0	1,0	137	32	30	120	19			
12	132,5	-	30,00	863,2652	6,0	47,4	-3,0	1,0	136	32	30	119	19			
13	17,5	-	32,50	863,3168	5,0	39,6	-3,0	1,0	136	33	31	118	20			
14	23,0	-	35,00	863,3674	6,0	47,6	-3,0	1,0	135	32	31	117	20			
15	29,2	-	37,50	863,4190	5,0	39,6	-3,0	1,0	136	33	31	110	19			
16	36,2	-	40,00	863,4655	4,0	32,3	-3,0	1,0	130	34	32	112	19			
17	45,0	-	42,50	863,5120	4,0	32,3	-3,0	1,0	130	34	32	114	18			
18	57,7	-	45,00	863,5636	5,0	39,5	-3,0	1,0	136	32	30	116	18			
19	92,3	-	47,50	863,6152	5,0	39,6	-3,0	1,0	135	32	30	119	18			
20	105,0	-	50,00	863,6658	6,0	47,4	-3,0	1,0	136	32	30	120	18			
21	113,8	-	52,50	863,7164	6,0	47,6	-3,0	1,0	137	34	32	124	19			
22	120,8	-	55,00	863,7724	7,0	55,4	-3,0	1,0	138	34	32	126	19			
23	127,0	-	57,50	863,8284	7,0	55,2	-3,0	1,0	138	33	31	128	19			
24	132,5	-	60,00	863,8790	6,0	47,6	-3,0	1,0	136	33	31	126	19			
25	-		-			-										
		Kt -	10,630	1,2276	5,5	43,6	-3,0	1,0	135,8	3	32	121	18			
					DA	DOS DE LABOR	ATÓRIO									
		MAS	SSA DE ÁGUA								A MOLECULAI					
BORBU	JLHADORES		Mi (g)	Mf (g)		DIFERENÇA (g)				ONENTE	%	Mx . Bx	relatório			
	01		270,20	267,50		-2,70		-		O ₂	2,2	0,97	2,20			
	02		274,80	297,40		22,60		1		O ₂	16,9	5,41	16,90			
	03		272,40 603.00	289,30 629,00		16,90 26.00		-	CO (ppm):	21	0,0021	0,00	< 0,2			
	05		003,00	029,00		0,00		1		H ₂	-,-	22,65	< 0,2 80,90			
	06					0,00		1			29,03	80,90				
	07					0,00		1			: ppm ÷ 10.00					
	08					0,00		1								
	09					0,00		1	Volume /	Acetona - reci	uperação amo	ostra (mL)	100			
		gua coletada	(g)			62,80		1			-		1			
									Matriz C	haminés	Flanges]	Pontos			
										gulares		х				

DIMENSÕES FÍSICAS		OBSERVAÇÕES	RESPONSÁVEIS
AB (m)	4,80		VINICIUS SILVA
BC (m)	15,00	•	TÉCNICO RESP. PELA AMOSTRAGEM
Ø (m)	1,20	•	MARILENE RODRIGUES
C (m)	-	•	CONFERÊNCIA E TRANSPOSIÇÃO DOS DADOS
L (m)		TEMPERATURA DA SAÍDA DO CONDENSADOR DE DIOXINAS/SVOC	JUCÉLIO BRUZZI

N° Pontos sugerido 24 T1

SISTEMA DE GESTÃO DA QUALIDADE - ECOAR MONITORA
FO-01-08

T2

PLANILHA DE ANÁLISE DE NOX e CO EM CHAMINÉS - MÉTODO INSTRUMENTAL

CLIENTE	ACTECH - ALUMINA CHEMICAL TECHNOLOGY LTDA
PROCESSO	CHAMINÉ DOS FORNOS A/B
DATA	22/03/24
OXIGÊNIO (%)	17,3
VAZÃO CNTP (Nm³/h)	21.392
ANALISADOR DE GASES	ECOAG010

AMOSTRAGEM	Nº DA AMOSTRA	HORA	CO (ppm)	CO (mg/Nm³)	NOX (ppm)	NOX (mg/Nm³)
1	5063/24-01	12:01	-	#VALOR!	30	57
2	5063/24-02	13:11	-	#VALOR!	31	59
3	5063/24-03	14:20	-	#VALOR!	35	67
4				-		-
5				-		-
6				-		-
7				-		-
8				-		-
9				-		-
			OBSERVAÇÕES:			
		NOM	IE DOS RESPONSÁVEIS			
VINICÍUS	VINICÍUS SILVA MARILENE		RODRIGUES		JUCÉLIO BRUZZI	
EXECUÇÃO DA /	AMOSTRAGEM	TRANSPOSIÇÃO E CO	NFERÊNCIA DOS DADOS	APF	ROVAÇÃO DOS RESULTA	ADOS

SISTEMA DE GESTÃO DA QUALIDADE - ECOAR MONITORAMENTO AMBIENTAL FO-66-05

ANEXO B - CERTIFICADOS DE CALIBRAÇÃO DOS EQUIPAMENTOS CRÍTICOS UTILIZADOS

AMBTECH SERVIÇOS ESPECIAIS LTDA

RELATÓ	RIO DE I	ENSAIO				Nº	189.	08.23	Pág.1/1	CRL 0
Dados de	o cliente									
	zão Social	Ecoar Mont	toramento A	mbiental I tris						Referência
Nome / Razão Social Ecoar Monitoramento Ambiental Ltda Endereço Rua Hamacek, 122 Lucília João Monievade									_	Relefericia
Serviço solicitado Ensaio de gasômetro seco e placa d									c	S nº: 197/23
Descrică	o do equir		MI I	es ensalad						4
	o do oquip	CIPA	omponent	oo viioaiau		sômetro Sec	n I an G1 6		Place	a de Orificio
Código o	u Nº Série		ECOAI003		Código		ECOGA045		*	
Bomba o	de Vácuo		ECOBO045		Nº de série		19L0077207		Código	ECOPO003
Padrão de	e referênc	la e métod	o emprega	do				1		
	Padrão		Có	digo	Válid	o até	Certifi	cado nº	Rast	reabilidade
V	Vet Test Me	eter	AT-	GU01	out-	-23		7848	RBC	- CAL 0045
Ba	arômetro dig	gital	AT-	BR03	nov	-23	CER 5	8668/21	RBC	- CAL 0486
Metodo	ologia:	NBR 12020:	1992 - Item 5	5.1 / Instru	ão de Trabalho	IT -03 Rev.	07	7		6
informacé	ões comn	lementares					9			
	trada: 22/08						Data do E	nsaio: 25/0	8/2023	7
Temperatur	ra e Umidad	de Relativa. n	nédias, durar	te o ensalo:	25,0 °C e 36%	UR	1			
	mosférica lo		860,5	mbar	.,0 0 0 00 /			1		4
	os obtidos						- 4			
Pressão	Fator de									
dif. Na placa de orificio (DH)	Fator de Correção do Gasôm Seco	Desvio Aceitável %	Incerteza do FCM	лН@і	Desvio Aceitável (mmH2O)	Incerteza do DH@i	Faixa de vazão (L/min)		Daw W	
dif. Na placa de orifício (DH)	Correção do Gasôm Seco	Aceitével %	do		Aceitável (mmH2O)	do	vazão			ados médios
dif. Na placa de orificio (DH) (mm H ₂ O)	Correção do Gasôm Seco (FCMI)	Aceitável %	do FCM	(mmH2O)	Aceitável (mmH2O)	do DH@i	vazão (L/min)			ados médios obtidos
dif. Na placa de orificio (DH) (mm H ₂ O)	Correção do Gasôm Seco (FCMI) 0,9796	Aceitével % < 2 < 1,7	do FCM 0,0091	(mmH2O) 49,30	Aceitável (mmH2O) < 3,9 0,2	do DH@i	vazão (L/min)			obtidos
dif. Na placa de orificio (DH) (mm H ₂ O) 10	Correção do Gasôm Seco (FCMI) 0,9796	< 2 1,7 0,8	0,0091 0,0092	(mmH2O) 49,30 47,60	Aceitável (mmH2O) < 3,9 0,2 1,9	0,95 0,92	vazão (L/min) 10,4 16,8			
dif. Na placa de orificio (DH) (mm H ₂ O) 10 25 40	Correção do Gasôm Seco (FCMI) 0,9796 0,9886 0,9919	Aceitével % < 2 1,7 0,8 0,4	0,0091 0,0092 0,0092	(mmH2O) 49,30 47,60 51,21	Aceitável (mmH2O) < 3,9 0,2 1,9	0,95 0,92 0,99	vaz8o (L/min) 10,4 16,8 20,4		FCM médio	0,996
dif. Na placa de orificio (DH) (mm H ₂ O) 10 25 40 50	Correção do Gasôm Seco (FCMI) 0,9796 0,9886 0,9919 0,9982	Aceitável % < 2 1,7 0,8 0,4 0,2	0,0091 0,0092 0,0092 0,0093	(mmH2O) 49,30 47,60 51,21 50,62	Aceitável (mmH2O) < 3,9 0,2 1,9 1,7 1,1	0,95 0,92 0,99 0,97	vazão (L/min) 10,4 16,8 20,4 22,9			obtidos
dif. Na placa de orificio (DH) (mm H ₂ O) 10 25 40	Correção do Gasôm Seco (FCMI) 0,9796 0,9886 0,9919	Aceitével % < 2 1,7 0,8 0,4	0,0091 0,0092 0,0092	(mmH2O) 49,30 47,60 51,21	Aceitável (mmH2O) < 3,9 0,2 1,9	0,95 0,92 0,99	vaz8o (L/min) 10,4 16,8 20,4		FCM médio	0,996
dif. Na placa de orificio (DH) (DH) 10 25 40 50 75 100 A Incerteza	Correção do Gasôm Seco (FCMI) 0,9796 0,9886 0,9919 1,0045 1,0151 expandida	4 2 1,7 0,8 0,4 0,2 0,8 1,9 (U) é estima co segundo de	0,0091 0,0092 0,0092 0,0093 0,0093 0,0094	(mmH2O) 49,30 47,60 51,21 50,62 49,43 48,81	Aceitável (mmH2O) < 3,9 0,2 1,9 1,7 1,1 0,1	0,95 0,92 0,99 0,97 0,95 0,94 fator de abras	vazão (L/min) 10,4 16,8 20,4 22,9 28,3 32,9	=2.	FCM médio	0,996
dif. Na placa de orificio (DH) (mm H ₂ O) 10 25 40 50 75 100 A Incerteza Dbs.: Ensa	Correção do Gasôm Seco (FCMI) 0,9796 0,9886 0,9919 0,9982 1,0045 1,0151 expandida alo realizado Ação ajuste ou re	4 2 1,7 0,8 0,4 0,2 0,8 1,9 (U) é estima co segundo co	0,0091 0,0092 0,0093 0,0093 0,0094 da para um r b tem 5.1 da	(mmH2O) 49,30 47,60 51,21 50,62 49,43 48,81 hivel de confi	Aceitável (mmH2O) < 3,9 0,2 1,9 1,7 1,1 0,1 0,7 ança de 95% e de abr/1992. Sim	0,95 0,92 0,99 0,97 0,95 0,94 fator de abras	vazão (L/min) 10,4 16,8 20,4 22,9 28,3 32,9	-2.	FCM médio	0,996
dif. Na place de orificio (DH) (mm H ₂ O) 10 25 40 50 75 100 A Incerteza Peito	Correção do Gasôm Seco (FCMI) 0,9796 0,9886 0,9919 0,9982 1,0045 1,0151 expandida alo realizado Ação ajuste ou re	4 2 1,7 0,8 0,4 0,2 0,8 1,9 (U) é estima co segundo de	0,0091 0,0092 0,0093 0,0093 0,0094 da para um r b tem 5.1 da	(mmH2O) 49,30 47,60 51,21 50,62 49,43 48,81	Aceitável (mmH2O) < 3,9 0,2 1,9 1,7 1,1 0,1 0,7 ança de 95% e de abr/1992.	0,95 0,92 0,99 0,97 0,95 0,94 fator de abras	vazão (L/min) 10,4 16,8 20,4 22,9 28,3 32,9	=2.	FCM médio	0,996

Este relatório atende aos requisitos de acreditação da Cgcre, que avaliou a competência do laboratório Ambtech

Os resultados apresentados neste documento têm significação restrita e se aplicam ao objeto detalhado, em questão. A reprodução deste documento para outros fins só poderá ser feita integralmente, sem nenhuma alteração ou rasura.

Rua Hudson, 665 Bairro Jardim Canadá CEP 34.007-640 Nova Lima/MG Tel.: 31-3288.3692 / 31 9 9500-3692

AMBTECH SERVIÇOS ESPECIAIS LTDA CNPJ: 03.580.260/0001-71 - INSC, EST.: 062.059222.00-51

RELATÓRIO DE ENSAIO	Nº	02.07.23	Pág.1/1
		···	

Dados do cliente

Nome / Razão Social:	Ecoar Monitoramento Ambiental Ltda	Referência	
Endereço:	Rus Hamacek, 122 Lucilia João Monlevade/MG	OS nº	144/23
Serviço solicitado:	Ensaio de Sonda Pitot	0311	144/23

Equipamento ou sistema ensalado

Descrição:	Sonda Pitot	Comprimento aprox.:	1,80m
Código da Sonda:		Código do Pitot:	ECOTP020

Informações básicas

				Transcript, Arrendito		
Data da entrada:	19/06/2023	Data do ensalo:	05/07/2023	Pressão atmosférica:	863	mbar
Temperatura ambiente: °C	15.5			Umidade Relativa:	50	% UR

Rai coo do I o lo la	a mamonofis ambiada	- Contract of the Contract of		
Padrão	Código	Certificado nº	Válido até	Rastreabilidade
Pitot Padrão Dwyer	AT-PP02	192 629-101	set-25	RBC - CAL 0162
Manômetro	AT-TP10	CER40994/22	jul-25	RBC - CAL 488
Paquimetro	AT-PQ02	017474/2021	ago-24	RBC - CAL 225
Método empregado :	ABNT NBR 12020:1992 -	item 5.2 - em 03 velocida	ades / Instrução de trabalh	no 1T07 Rev.09

Resultados obtidos:

Velocidade	Tran	Tramo A Tramo B Des		Tramo B		Cps	Incerteza	Press	Ses médias	obtidas
do ar	Cps (A)	> Desvio	Cps (B):	> Desvio	entre (A) e	médio	U	Trame A	Tramo B	∆p padrão
± m/s	Opa (A)	Cps-Cps(A)	Cps (a):	Cps-Cps(B)	(B)	- 7		ΔPs (n	nmH2O)	mmH2O
6	0,8128	0,001	0,8150	0,001	0,002	0,8139	0,012	3,7	3,7	2,4
15	0,8039	0,000	0,8099	0,000	0,006	0,8069	0,012	20,3	20,0	13,3
23	0,7907	0,000	0,7983	0,000	0,008	0,7945	0,011	47,5	46,6	30,3

A încerteza expandida (U) é estimada para um nível de confiança de 95% e fator de abrangência K = 2.

Condições de Aprovação (item 5.2.5.1.e / 5.2.5,2.e - NBR 12020)

3 - Característica e limites de desalinhamentos, atendidos (S ou N)?

- 1 Os desvios nos tramos A e B devem ser =< 0,01
- 2 A diferença entre Cps (A) e Cps (B) deve ser =< 0,01
- 4 Equipamento necessitou de ajuste (S ou N) ?

NÃO se SIM RAE nº: SIM

Availaçã	o do Pitot
Aprovado	Reprovado
Х	

Para o Pitot manter o fator de calibração - Cps, as características devem ser mantidas na sonda, conforme definido em norma, caso contrário o Cp será alterado e esta deverá ser reculibrado.

Nova Lima, 10 julho, 2023

Ricardo Soares Santos Gerente do Laboratório

Este relatório atende aos requisitos de acreditação da Cycre, que avaliou a competência do laboratório Ambtech

Os resultados apresentados neste documento têm significação restrita e se aplicam ao objeto detalhado, em questão. A reprodução deste documento para outros fins só poderá ser feita integralmente, sem nenhuma alteração ou rasura.

Rua Hudson, 665 Bairro Jardim Canadá CEP 34.007-640 Nova Lima/MG Tel.: 31-3288.3692 / 31 9 9500-3692

ANEXO C - ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA (ART) - CREA MG

Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977		VIA DO CONTRATANTE Página 1/1	
Anotação de Responsabilidade Técnica - ART CREA-MG Lei nº 6.496, de 7 de dezembro de 1977 Conselho Regional de Engenharia e Agronomia de Minas Gerais		ART de Cargo ou Função 14201600000003027008	
JUCELIO FRAGA BRUZZI			
Fitulo profissional: ENGENHEIRO AMBIENTAL;		RNP: 1415096252	
		Registro: 04.0.0000200472	
2. Contralante			
Contratante: ECOAR MONITORAMENTO AMBIENTAL LTDA		CNPJ: 05.770.537/0001-54	
ogradouro: RUA HAMACEK		Nº: 00122	
7	Bairro: LUCÍLIA		
Cidade: JOÃO MONLEVADE Fipo de contratante: PESSOA JURÍDICA DE DIREITO PRIVADO	UF: MG	CEP: 35930-240	
3. Vinculo Contratual Inidade administrativa: ECOAR MONITORAMENTO AMBIENTAL LT	'DA		
ogradouro: RUA HAMACEK		Nº: 000122	
	Bairro: LUCÍLIA		
idade: JOÃO MONLEVADE	UF: MG	CEP: 35930-240	
ata de início: 12/07/2003			
ipo de vínculo: SÓCIO			
dentificação do cargo/função: GERENTE TÉCNICO			
		Quantidade: Unidade:	
A mudança de cargo ou função	exige o registro de nova AR	8.00 H/D	
	exige o registro de nova AR	8.00 H/D	

EA102-24 FO-56-06 Página 15 de 16

- A Ecoar Monitoramento Ambiental Ltda adota como regra de decisão para a declaração da conformidade de seus resultados, não considerar a incerteza dos ensaios e amostragens para declarar se um resultado está conforme ou não com uma Legislação Ambiental, Lei, Decreto, Regulamento, Nota Técnica ou similar.
- Os planos de amostragens realizadas pela Ecoar Monitoramento Ambiental Ltda possuem o mesmo número de identificação das amostras e estão disponíveis, se requeridos. Os métodos de amostragens estão contidos no campo Metodologia Empregada.
- As incertezas expandidas de medição para todos os ensaios do escopo de acreditação da Ecoar foram calculadas de acordo com os métodos de referência e estão à disposição para consulta a qualquer momento por parte de nossos clientes.
- As condições ambientais (temperatura de entrada e saída do gasômetro) que influenciam nos resultados, são monitoradas e registradas na planilha de amostragem, e são utilizadas para a correção do volume de gás amostrado para a condições normais de temperatura e pressão CNTP.
- Nenhuma das informações contidas nesse relatório pode ser reproduzida ou alterada sem o acordo formal da Ecoar Monitoramento Ambiental Ltda. Este relatório não pode ser reproduzido de forma parcial, somente na íntegra.
- Os resultados se referem somente às amostras analisadas. As amostras coletadas pelo cliente, são analisadas conforme recebidas.
- Todas as informações do cliente, referentes a este trabalho estão protegidas por nossa Política de Confidencialidade.

Aprovado por:

Jucélio Bruzzi

CREA-MG: 200472/D

CRQ-MG: 02.406.382 - 2ª Região

Engenheiro Ambiental Gerente Técnico Signatário Autorizado