

RELATÓRIO TÉCNICO DE MONITORAMENTO EM EMISSÕES ATMOSFÉRICAS

ACTECH ALUMINA CHEMICAL TECHNOLOGY LTDA OURO PRETO - MG

CHAMINÉ DO SECADOR DE HIDRATO

PROGRAMA DE MONITORAMENTO - 2023

Execução

Julho de 2023

RELATÓRIO DE ENSAIO №.:	EA250-23
DATA DE EMISSÃO DO RELATÓRIO:	08/08/2023

LABORAT	LABORATÓRIO RESPONSÁVEL PELA EXECUÇÃO DAS AMOSTRAGENS E ENSAIOS										
Nome do laboratório:	Ecoar Monitora Ambiental Ltda		,	indereço do Rua Hamacek, 122 - Luc Monlevade - MG							
CNPJ:	05.770.537/000)1-54	e-mail:		ecoar@ecoarma.com.br						
EQUIPE TÉCNICA DA ECOAR MONITORAMENTO AMBIENTAL RESPONSÁVEL PELOS TRABALHOS DE CAMPO											
	NOME			FUNÇÃO							
WEME	RSON DE CASTR	O GANDRA		TÉCN	NICO EM MEIO AMBIENTE III						
		CNICA DA ECO <i>A</i> SÁVEL PELA EL									
NO	ME	FUN	NÇÃO		REGISTRO PROFISSIONAL						
JUCÉLIO	BRUZZI	GERENTE TÉCNICO			CRQ MG nº. 02.406.382 - 2ª Região CREA-MG: 200472/D						

	NOME E INFORMAÇÕES DE CONTATO DO CLIENTE											
,												
Razão Social:	Actech Alumina Chemical Technology LTDA	Endereço:	Av. Américo René Gianetti, Nº S/N, Saramenha, Ouro Preto-MG, CEP:									
CNPJ:	17.720.994/0001-13	, ,	35400-000									
e-mails: bruno.mapa@actechbr.com, luciana.alves@actechbr.com Telefone: (31) 3559 9130												
	RESPONSÁVEL PELO ACOI	MPANHAMENTO	POR PARTE DO CLIENTE									
		Prune Mane										
		Bruno Mapa										
		Meio Ambiente										

LOCAL DE REALIZAÇÃO DAS ATIVIDADES DE LABORATÓRIO										
Amostragens e ensaios de campo:	Ensaios de laboratório:									
No endereço do cliente, acima.	Em nossas instalações permanentes, situada à Rua Hamacek, 122 Lucília, João Monlevade - MG. CEP 35.930-240									

1. INTRODUÇÃO

Este relatório vem apresentar os resultados da campanha de amostragens e análises realizada em chaminés da unidade da Actech Alumina Chemical Technology LTDA, localizada no município de Ouro Preto - MG. São apresentados os resultados das medições realizadas no mês de julho de 2023. A relação de pontos e parâmetros monitorados está contida no tópico Resultados.

2. METODOLOGIA EMPREGADA

2.1. Métodos de Referência

ABNT NBR 11966:1989	Determinação da Velocidade e Vazão dos Gases em Chaminés e Dutos de Fontes Estacionárias.								
ABNT NBR 11967:1989	Determinação da Umidade em Chaminés e Dutos de Fontes Estacionárias								
ABNT NBR 12019:1990	Determinação de Material Particulado em Chaminés e Dutos de Fontes Estacionárias								
CETESB L9.210:1990	Análise dos Gases de Combustão Através do Aparelho Orsat - Método de Ensaio								
CETESB L9.221:1990	Dutos e Chaminés de Fontes Estacionárias - Determinação dos Pontos de Amostragem								

2.2. Estratégias de Amostragem

CHAMINÉ	CHAMINÉ DO SECADOR DE HIDRATO											
	Dimensô	ies Físicas		Coordenadas	Geográficas	Quantidade de Pontos e Eixos						
Cham Circul		Chaminés Retangulares				Nº. Total de Pontos:	24					
fluxo •••••	B B	000	↑ SB			Nº. de Eixos:	2					
sentitio do fluxo	8	Servicio de fluyo			-20.398383° -43.519172°	Registro Fotográfico						
AB (m):	4,3	AB (m):	-									
BC (m):	0,85	BC (m):	-									
Ø C (m):	0.42	C (m): -										
Ø C (m):	0,42	L (m): -										

Legenda:

- AB: Distância em metros à jusante da última singularidade.
- BC: Distância em metros à montante da última singularidade.
- ØC: Diâmetro da chaminé, em metros
- C: Comprimento da chaminé, em metros
- L: Largura da chaminé, em metros

2.3. Adições, desvios ou exclusão aos métodos de amostragem e ensaio

Não aplicável.

3. PARÂMETROS OPERACIONAIS

Nota: As informações contidas neste tópico foram fornecidas pelo cliente durante a realização das amostragens em campo.

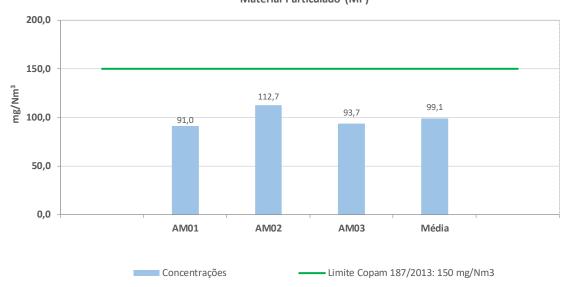
3.1. CHAMINÉ DO SECADOR DE HIDRATO

Durante o período de monitoramento, o processo se manteve estável e em condições normais de operação.

Parâmetro de Produção:

Produção: 50,43 ton./dia.

4. RESULTADOS


CHAMINÉ DO SECADOR DE HIDRATO - Material Particulado (MP)											
PARÂMETROS	UN.	LQ	AM01	AM02	AM03						
N° DA AMOSTRA	-	-	9885/23-01	9885/23-02	9885/23-03						
DATA DAS AMOSTRAGENS / ENSAIOS DE CAMPO	-	-	18/072023	18/072023	18/072023						
DATA DO RECEBIMENTO DAS AMOSTRAS	-	-	23/07/23	23/07/23	23/07/23						
DATA DOS ENSAIOS DE LABORATÓRIO	-	-	26/07/23	26/07/23	26/07/23						
HORÁRIO INICIAL DA AMOSTRAGEM	hh:mm	-	9:00	10:20	11:40						
DURAÇÃO DA AMOSTRAGEM	min	-	60,0	60,0	60,0						
TEMPERATURA	°C	1	60	62	64						
UMIDADE	%	0,01	3,29	3,66	2,98						
VELOCIDADE	m/s	1,00	8,11	8,15	8,15						
VAZÃO (condições da chaminé)	m³/h	300	4.043	4.063	4.067						
VAZÃO (condições normais base seca)	Nm³/h	300	2.809	2.788	2.798						
DIÓXIDO DE CARBONO	%	0,2	< 0,2	< 0,2	< 0,2						
OXIGÊNIO	%	0,2	20,9	20,9	20,9						
MONÓXIDO DE CARBONO	%	0,2	< 0,2	< 0,2	< 0,2						
FATOR ISOCINÉTICO	%	-	101	102	101						
CONCENTRAÇÃO DE MP	mg/Nm³	2	91,0	112,7	93,7						
TAXA DE EMISSÃO DE MP	kg/h	0,0056	0,2557	0,3141	0,2623						

5. GRÁFICO COMPARATIVO

6. DISCUSSÃO DOS RESULTADOS

Os resultados das concentrações da(s) fonte(s) monitorada(s) foram comparados à legislação estadual que fixa limites de emissão para poluentes atmosféricos.

A legislação estadual atualmente em vigor no Estado de Minas Gerais é a Deliberação Normativa nº 187 de 19 de setembro de 2013 do COPAM - Conselho Estadual de Política Ambiental, que estabelece condições e limites máximos de emissão de poluentes atmosféricos para fontes fixas.

A comparação dos resultados obtidos nessa campanha de amostragens pode ser visualizada na Tabela 6.1 abaixo:

Tabela 6.1 - Comparação dos resultados com os limites máximos de emissão										
Fonte	Parâmetro	Padrão de Emissão DN 187:2013	Unidade	Média das Amostragens						
CHAMINÉ DO SECADOR DE HIDRATO	MP	150 ⁽¹⁾	mg/Nm³	99,1						

⁽¹⁾ DN 187:2013 - Anexo XVII (Condições e LME para fontes fixas pontuais não expressamente listadas nos demais anexos desta Deliberação Normativa)

Se compararmos os resultados obtidos nesta campanha de monitoramento com a Legislação Estadual vigente, definida pela Deliberação Normativa nº. 187 de 19 de setembro de 2013 do COPAM, conclui-se que, o parâmetro passível de comparação <u>está em conformidade</u> com o limite definido pela Legislação em questão.

ANEXO A - REGISTROS DE AMOSTRAGEM

Notes to the continue of the					PLANILH	A DE AMOS	TRAGEM ISO	CINÉTICA EI	M CHAMINI	ÉS				
Procession Common Commo	CLIENTE	ACTECH: AI	LIMINA CHEM	IICAI TECHNI	DI OGY I TDA						DATA		19/072022	
Second Graph Companies					DEOGT LIDA							FM		
Composition 10,000 Composition 10,00					665 O	Ø Chaminé (m)		0.42	Ø Boquilha (r	mm)		Vaz Inicial (I /min)		0.2
Mary				ov										
Part				0										
POBITION CATALITY CATALITY			5	-	-,		(4.0							
POBITION CATALITY CATALITY	EQUIPAMENTOS I	JTILIZADOS:	AMOST	TRADOR	ECOAI002	GASÔMETRO	ECO	3A052	PITOTS	ECO	TP002	BOQUII HAS	C	-7
Pontro Diate Press Presence Press P	DISTRIBUIÇ	ÃO DE PONTOS	(cm)	TEMPO	VOLUME	P	PRESSÃO (mmH ₃ 0	D)	VÁCUO		TE	MPERATURAS	(°C)	
1		Dist. Ptos	Dist. Ptos	-		-			•	CHAMINÉ				BORB.
1 12.0		(Circular	(Ketangular)						_					
2 14.8				0,00	146,0102	1	DADOS D	E CAMPO						
3 17.0 7.50 146,1548 5.0 28.1 2.0 59 26 25 114 12 14 19.4 10.00 146,2000 5.0 29.1 2.0 59 26 25 115 13 14 15 15 15 15 15 15 15	1	12,9	-	2,50	146,0584	5,0	29,1	0,5	2,0	59	26	25	112	10
3 17.0 7.50 146,1548 5.0 28.1 2.0 59 26 25 114 12 14 19.4 10.00 146,2000 5.0 29.1 2.0 59 26 25 115 13 14 15 15 15 15 15 15 15	2	14.8	-	5.00	146,1063	5.0	29.1	-	2.0	59	26	25	113	12
5 22.5 12.50 146,2592 5.0 22.1 2.0 59 26 25 115 14 6 27.0 . 15.00 146,2594 5.0 22.1 . 2.0 59 26 25 116 15 7 30.0 . 17.70 146,3596 5.0 22.1 . 2.0 59 26 25 116 15 8 43.5 . 20.00 146,3596 5.0 22.1 . 2.0 59 26 25 116 14 9 46.0 . 22.20 146,4440 5.0 20.1 . 2.0 59 26 25 116 14 11 51.2 . 27.50 146,5244 5.0 22.1 . 2.0 59 26 25 116 15 12 53.1 . 30.00 146,5886 5.0 22.1 . 2.0 59 26 25 116 18 12 53.1 . 30.00 146,5886 5.0 22.1 . 2.0 59 26 25 116 18 14 14 14 2 2 2 2 2 2 2 2 2		_	-	-		-		-			-	-		
5 22.5 12.50 146,2592 5.0 22.1 2.0 59 26 25 115 14 6 27.0 . 15.00 146,2594 5.0 22.1 . 2.0 59 26 25 116 15 7 30.0 . 17.70 146,3596 5.0 22.1 . 2.0 59 26 25 116 15 8 43.5 . 20.00 146,3596 5.0 22.1 . 2.0 59 26 25 116 14 9 46.0 . 22.20 146,4440 5.0 20.1 . 2.0 59 26 25 116 14 11 51.2 . 27.50 146,5244 5.0 22.1 . 2.0 59 26 25 116 15 12 53.1 . 30.00 146,5886 5.0 22.1 . 2.0 59 26 25 116 18 12 53.1 . 30.00 146,5886 5.0 22.1 . 2.0 59 26 25 116 18 14 14 14 2 2 2 2 2 2 2 2 2				, , , ,					, ,					
6			1											
7 90,0		,	-	,										
8					-,		-,		, , ,					
0 46,6														
10					-,									
11		_	-	-					-		-	-		
12			-			5,0						-		
13		,-		,	,	-,-	,-		-,-					
14	12	53,1	-	30,00	146,5886	5,0	29,1	-	2,0	59	26	25	117	17
15 17.0 - 37.50 146,7272 4.5 26.2 - 1.5 60 27 25 120 12 16 19.4 - 40.00 146,7734 4.5 26.2 - 1.5 60 27 25 120 13 17 22.5 - 42.50 146,8196 4.5 26.2 - 1.5 60 27 25 120 13 18 27.0 - 45.00 146,8658 4.5 26.2 - 1.5 60 27 25 119 13 19 39.0 - 47.50 146,9120 4.5 26.2 - 1.5 60 27 25 119 14 20 43.5 - 50.00 146,8682 4.5 26.2 - 1.5 60 27 25 119 14 21 46.6 - 52.50 147,004 4.5 26.2 - 1.5 60 27 25 118 14 21 46.6 - 52.50 147,004 4.5 26.2 - 1.5 60 27 25 118 15 22 46.0 - 55.00 147,066 4.5 26.2 - 1.5 60 27 25 118 15 23 51.2 - 57.50 147,066 4.5 26.2 - 1.5 60 27 25 116 15 24 53.1 - 60.00 147,1430 4.5 26.2 - 1.5 60 27 25 116 15 24 53.1 - 60.00 147,1430 4.5 26.2 - 1.5 60 27 25 116 15 24 53.1 - 60.00 147,1430 4.5 26.2 - 1.5 60 27 25 116 15 24 53.1 - 60.00 147,1430 4.5 26.2 - 1.5 60 27 25 116 15 25 - 6.80 1,1328 4.8 27,7 0.8 1.8 59,5 26 117 14 25 - 6.80 1,1328 4.8 27,7 0.8 1.8 59,5 26 117 14 26 MASSA DE AGUA CONDENSADA MASSA DE AGUA CONDENSADA MASSA DE AGUA CONDENSADA DADOS DE LABORATÓRIO CO₂ 0,0 0,0 0,0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,2 0,0 0,0 0 < 0,0 0,0 0 < 0,0 0,0 0 < 0,0 0,0	13	12,9	-	32,50	146,6348	4,5	26,2	1,0	1,5	60	27	25	118	17
166	14	14,8	-	35,00	146,6810	4,5	26,2	-	1,5	60	27	25	119	12
17	15	17,0	-	37,50	146,7272	4,5	26,2	-	1,5	60	27	25	120	12
18	16	19,4	-	40,00	146,7734	4,5	26,2	-	1,5	60	27	25	120	13
19 39.0 · 47.50 146,9120 4.5 26.2 · 1.5 60 27 25 119 14 20 43.5 · 50.00 146,9582 4.5 26.2 · 1.5 60 27 25 118 14 21 46.6 · 52.50 147,0044 4.5 26.2 · 1.5 60 27 25 118 15 22 49.0 · 55.00 147,0566 4.5 26.2 · 1.5 60 27 25 118 15 23 51.2 · 57.50 147,0968 4.5 26.2 · 1.5 60 27 25 116 15 24 53.1 · 60.00 147,1430 4.5 26.2 · 1.5 60 27 25 116 15 25 · · · · · · · · · · · · · · · · · · ·	17	22,5	-	42,50	146,8196	4,5	26,2	-	1,5	60	27	25	120	13
19 39.0	18	27,0	-	45,00	146,8658	4,5	26,2	-	1,5	60	27	25	119	13
21	19	39,0	-	47,50	146,9120	4,5	26,2	-		60	27	25	119	14
21	20	43.5	-	50.00	146.9582	4.5	26.2	-	1.5	60	27	25	118	14
22 49,0 - 55,00 147,0506 4,5 26,2 - 1,5 60 27 25 117 15 23 51,2 - 57,50 147,0968 4,5 26,2 - 1,5 60 27 25 116 15 24 53,1 - 60,00 147,1430 4,5 26,2 - 1,5 60 27 25 115 16 25 - <td< td=""><td></td><td>_</td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td>-</td><td></td><td>l</td><td>-</td><td></td><td></td></td<>		_		-		-			-		l	-		
23 51.2 - 57.50 147.0968 4.5 26.2 - 1.5 60 27 25 116 15 24 53.1 - 60.00 147.1430 4.5 26.2 - 1.5 60 27 25 115 16 25				- ,										
24 S3,1 - 60,00 147,1430 4.5 26.2 - 1,5 60 27 25 115 16 25														
25					,									
No. No.		53,1	-	60,00	147,1430	4,5	26,2	-	1,5	60	21	25	115	16
DADOS DE LABORATÓRIO	25	-	ļ -	-			-							
MASSA DE ÁGUA CONDENSADA BORBULHADORES Mi (g) Mf (g) DIFERENÇA (g) COMPONENTE % Mx . Bx relatório 01 579,00 588,30 7,30 CO₂ 0,0 0,00 < 0,2			Kt -	6,480	1,1328				1,8	59,5	2	26	117	14
BORBULHADORES Mi (g) Mf (g) DIFERENÇA (g)				(DOS DE LABOR	ATORIO	1					
CO ₂ 0,0 0,00 < 0.2			MA						_					
02 574,30 579,40 5,10 03 475,80 476,20 2,40 04 578,90 588,90 10,00 05 0 0 0,00 07 0 0,000 08 0 0,00 09 0 0,00 Massa de água coletada (g) 2,40 0,10 0,10 0,10 0,00 0,00 0,00 0,00 0	BORE							1	_					
03														
04 578,90 588,90 10,00 H₂ 0,0 0,00 < 0,2 05 0,00 0,00				-		-			-			-		
05 0,00 N₂ 79,1 22,15 79,10 06 0,00 Σ(g/gmol) 28,84 - 07 0,00 Nota: ppm ÷ 10,000 = % 08 0,00 09 0,00 Volume Acetona - recuperação amostra (mL) 90 Massa de água coletada (g) 24,80 Matriz Chamínés Flanges Pontos					-, -				4				-,	
06 0,00				5/8,90	588,90				-				-,	
07 0,00 Nota: ppm ÷ 10,000 = % 08 0,00 09 0,00 Volume Acetona - recuperação amostra (mL) 90 Massa de água coletada (g) 24,80 Matriz Chamínés Flanges Pontos									1	<u> </u>		/9,1		
08 0,00 09 0,00 Massa de água coletada (g) 24,80 Matriz Chaminés Flanges Pontos									_		- 10-0			-
09 0,00 Volume Acetona - recuperação amostra (mL) 90 Massa de água coletada (g) 24,80 Matriz Chaminés Flanges Pontos							-,		-		Nota	: ppm ÷ 10.00	u = %	
Massa de água coletada (g) 24,80 Matriz Chaminés Flanges Pontos									-	V-1			anten (r. 1.)	
Matriz Chaminés Flanges Pontos				(=)						Volume A	acetona - recu	uperação am	ostra (mL)	90
		Massa de â	gua coletada	(9)			24,80		_			F1	1	B
												Flanges	х	Pontos

DIMENSÕES FÍS	DIMENSÕES FÍSICAS				RESPONSÁVEIS					
AB (m)	4,30				WEMERSON DE CASTRO GANDRA					
BC (m)	0,85					TÉCNICO RESP. PELA AMOSTRAGEM				
Ø (m)	0,42		TEMPI	ERATURA DA	MARILENE RODRIGUES					
C (m)		T1	-	T2	-	Т3		T4	-	CONFERÊNCIA E TRANSPOSIÇÃO DOS DADOS
L (m)			VER	IFICAÇÃO D	A BALANÇA CO	M PESO PADRĀ	O (tolerância: ±	5g)		JUCÉLIO BRUZZI
N° Pontos sugerido	8	Balança:	ECOBL013	Peso	Padrão:	ECOPP013	OPP013 Resultado (g): 100,0			APROVAÇÃO DOS RESULTADOS

SISTEMA DE GESTÃO DA QUALIDADE - ECOAR MONITORAMENTO AMBIENTAL

Página 01 de (

PLANILHA DE AMOSTRAGEM ISOCINÉTICA EM CHAMINÉS

CLIENTE	ACTECH- AL	UMINA CHEM	ICAL TECHNO	DLOGY LTDA						DATA		18/072023	
PROCESSO		SECADOR D			1					AMOSTRAG		2	
Hora Inicial	10:20	PATM (mmH		665,0	Ø Chaminé (m)		0,42	Ø Boquilha (r		7,49	Vaz. Inicial (L		0,2
Hora Final	11:21	FC Pitot's		0,8030	Comprimento - 0	• • •	-	Flanges (cm)		12			0,0
Duração (min)	60,0	FC gasômetro	0	0,9960	Largura - L (m)	(dist. Pontos)	-	Nº Pontos	¹⁰ Pontos 24 Nº de Pontos p/ eixo 12			12	
EQUIPAMENTOS U	ITILIZADOS:	AMOST	RADOR	ECOAI002	GASÔMETRO	ECO	GA052	PITOTS	ECO	TP002	BOQUILHAS	C	-7
	ÃO DE PONTOS	L.,	TEMPO	VOLUME		RESSÃO (mmH ₂ 0		VÁCUO			MPERATURAS		
PONTO	Dist. Ptos (Circular	Dist. Ptos (Retangular)	min	m³	ΔP	ДН	PE	in Hg	CHAMINÉ	ENTRADA	SAIDA	FILTRO	BORB.
	(Circular	(Ketangular)	l	I						1		I	
			0,00	147,1608		DADOS D	E CAMPO						
1	12,9	-	2,50	147,2068	4,5	26,2	0,5	1,5	60	27	25	113	12
2	14,8	-	5,00	147,2528	4,5	26,2	-	1,5	60	27	25	113	13
3	17,0	-	7,50	147,2988	4,5	26,2	-	1,5	60	27	25	115	13
4	19,4	-	10,00	147,3448	4,5	26,2	-	1,5	60	27	25	115	15
5	22,5	-	12,50	147,3908	4,5	26,1	-	1,5	61	27	25	115	16
6	27,0	-	15,00	147,4368	4,5	26,1	-	1,5	61	27	25	114	14
7	39,0	-	17,50	147,4828	4,5	26,1	-	1,5	61	27	26	114	15
8	43,5	-	20,00	147,5288	4,5	26,1	-	1,5	61	27	26	116	16
9	46,6	-	22,50	147,5748	4,5	26,1	-	1,5	61	27	26	116	14
10	49,0	-	25,00	147,6208	4,5	26,1	-	1,5	62	27	26	116	12
11	51,2	-	27,50	147,6668	4,5	26,1	-	1,5	62	27	26	112	12
12	53,1	-	30,00	147,7128	4,5	26,1	-	1,5	62	27	26	112	13
13	12,9	-	32,50	147,7612	5,0	29,0	0,5	2,0	62	28	26	112	13
14	14,8	-	35,00	147,8096	5,0	28,9	-	2,0	63	28	26	110	13
15	17,0	-	37,50	147,8580	5,0	28,9	-	2,0	63	28	26	110	13
16	19,4	-	40,00	147,9064	5,0	28,9	-	2,0	63	28	26	112	14
17	22,5	-	42,50	147,9548	5,0	28,9	-	2,0	63	28	26	113	15
18	27,0	-	45,00	148,0032	5,0	28,8	-	2,0	64	28	26	114	15
19	39,0	-	47,50	148,0516	5,0	28,9	-	2,0	64	28	27	115	16
20	43,5	-	50,00	148,1000	5,0	28,9	-	2,0	64	28	27	117	17
21	46,6	-	52,50	148,1484	5,0	28,8	-	2,0	65	28	27	117	17
22	49,0	-	55,00	148,1968	5,0	28,8	-	2,0	65	28	27	118	18
23	51,2	-	57,50	148,2452	5,0	28,8	-	2,0	65	28	27	118	18
24	53,1	-	60,00	148,2936	5,0	28,8	-	2,0	65	28	27	119	17
25	-	-	-			-							
		Kt -	6,480	1,1328	4,8	27,5	0,5	1,8	62,4	2	27	114	15
						DOS DE LABOR	ATÓRIO						
		MA	SSA DE ÁGUA					-			A MOLECULA		
BORE	ULHADORES		Mi (g)	Mf (g)		DIFERENÇA (g)	1	1		ONENTE	%	Mx . Bx	relatório
	01		564,10 563,70	568,30 569.30		4,20 5,60		1		O ₂	0,0 20.9	0,00	< 0,2
	03		458,90	461,30		2,40		1	CO (ppm):	0	0,0000	0,00	< 0,2
		594,30		15,40		1		H ₂	0.0	0.00	< 0,2		
	05		2.3,00	22 1,00	0,00			1		¹² √2	79,1	22,15	79,10
	06				0,00			1	·	Σ (g/gmol)		28,84	-
	07					0,00		1			: ppm ÷ 10.00	0 = %	L
	08					0,00		1	L				-
	09					0,00		1	Volume A	Acetona - recu	uperação am	ostra (mL)	100
	Massa de á	gua coletada	(g)			27,60		1					
								-		haminés	Flanges		Pontos
										gulares	-	х	-

DIMENSÕES FÍ	SICAS		OBSERVAÇÕES							RESPONSÁVEIS
AB (m)	4,30				WEMERSON DE CASTRO GANDRA					
BC (m)	0,85				TÉCNICO RESP: PELA AMOSTRAGEM					
Ø (m)	0,42	-			MARILENE RODRIGUES					
C (m)	-	-								CONFERÊNCIA E TRANSPOSIÇÃO DOS DADOS
L (m)	-		TEN	IPERATURA I		JUCÉLIO BRUZZI				
N° Pontos sugerido	8	T1	-	T2	-	Т3	-	T4	-	APROVAÇÃO DOS RESULTADOS

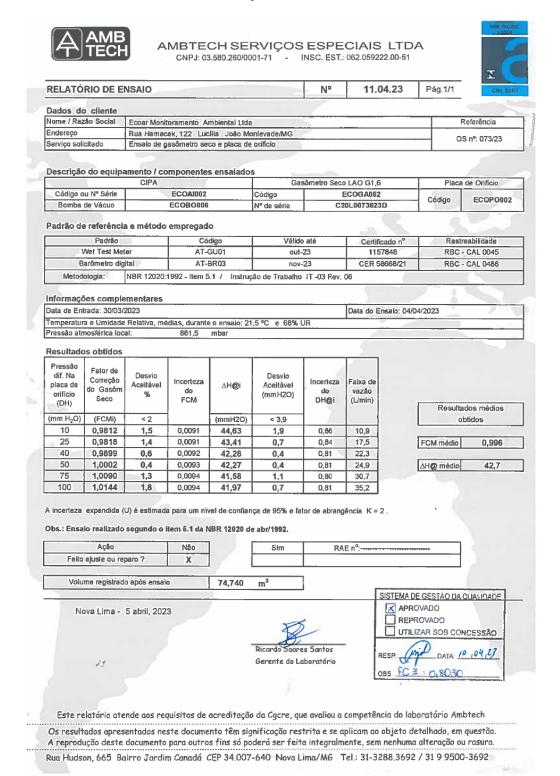
SISTEMA DE GESTÃO DA QUALIDADE - ECOAR MONITORAMENTO AMBIENTAL

Página 01 de 02

PLANILHA DE AMOSTRAGEM ISOCINÉTICA EM CHAMINÉS

CLIENTE	ACTECH. AI	UMINA CHEM	ICAI TECUN	DI OGY I TDA						DATA		18/072023	
PROCESSO		D SECADOR D		DEOG! EIDA						AMOSTRAG	FM	3	
Hora Inicial	11:40	PATM (mmHg		665,0	Ø Chaminé (m)		0,42	Ø Boquilha (r	nm)	7.49	Vaz. Inicial (L	/min)	0,2
Hora Final	12:41	FC Pitot's	<i></i>	0.8030	Comprimento - 0		-	Flanges (cm)		12	Vaz. Final (L/		0.2
Duração (min)	60,0	FC gasômetro	0	0,9960	Largura - L (m)	(dist. Pontos)		Nº Pontos	Pontos 24 N		Nº de Pontos	p/ eixo	12
EQUIPAMENTOS I	UTILIZADOS:	AMOST	RADOR	ECOAI002	GASÔMETRO	ECO	3A052	PITOTS	ECO	TP002	BOQUILHAS	C	-7
DISTRIBUIÇ	ÃO DE PONTOS	(cm)	TEMPO	VOLUME	F	RESSÃO (mmH ₂	D)	VÁCUO		TE	MPERATURAS	(°C)	
PONTO	Dist. Ptos (Circular	Dist. Ptos (Retangular)	min	m³	ΔP	ΔH	PE	in Hg	CHAMINÉ	ENTRADA	SAIDA	FILTRO	BORB.
						DADOS	E CAMPO						
			0,00	148,3106		DADOS L	E CAMPO						
1	12,9	-	2,50	148,3590	5,0	29,0	-	2,0	62	28	25	112	12
2	14,8	-	5,00	148,4074	5,0	29,0	-	2,0	62	28	25	112	12
3	17,0	-	7,50	148,4558	5,0	29,0	-	2,0	62	28	25	115	12
4	19,4	-	10,00	148,5042	5,0	29,0	-	2,0	62	28	25	115	11
5	22,5	-	12,50	148,5526	5,0	28,9	-	2,0	63	28	25	116	11
6	27,0	-	15,00	148,6010	5,0	28,9	-	2,0	63	28	25	116	10
7	39,0	-	17,50	148,6494	5,0	28,9	-	2,0	63	28	25	114	10
8	43,5	-	20,00	148,6978	5,0	28,9	-	2,0	63	28	25	115	120
9	46,6		22,50	148,7462	5,0	28,9	-	2,0	63	29	25	116	10
10	49,0		25,00	148,7946	5,0	28,9	-	2,0	63	29	25	116	14
11	51,2	-	27,50	148,8430	5,0	28,9	-	2,0	64	29	26	116	14
12	53,1		30,00	148,8914	5,0	28,9	-	2,0	64	29	26	114	15
13	12,9		32,50	148,9376	4,5	26,0	3,5	1,5	64	29	26	117	16
14	14,8		35.00	148,9838	4,5	26,0	3,3	1,5	64	29	26	118	13
15	17,0		37,50	149,0300	4,5	25,9	-		65	29	26	118	13
16	19.4	-	40.00	149,0300	4,5	25,9	-	1,5	65	29	26	118	13
17	22,5		42,50	149,0762		25,9	-	1,5	65	29	26	119	13
		-			4,5					_			
18	27,0	-	45,00	149,1686	4,5	26,0	-	1,5	65	30	27	112	14
19	39,0	-	47,50	149,2148	4,5	26,0	-	1,5	65	30	27	113	17
20	43,5	-	50,00	149,2610	4,5	26,2	-	1,5	63	30	27	112	17
21	46,6	-	52,50	149,3072	4,5	25,9	-	1,5	66	30	27	115	17
22	49,0	-	55,00	149,3534	4,5	25,9	-	1,5	66	30	27	116	16
23	51,2	-	57,50	149,3996	4,5	25,9	-	1,5	66	30	27	117	16
24	53,1	-	60,00	149,4458	4,5	25,9	-	1,5	66	30	27	117	16
25	-	-	-			-							
		Kt -	6,480	1,1352	4,8	27,4	3,5	1,8	63,9	1	27	115	18
						DOS DE LABOR	ATÓRIO		1				
		MAS		CONDENSA				1			A MOLECULA		
BORE	BULHADORES		Mi (g)	Mf (g)	-	DIFERENÇA (g	1	4		ONENTE	%	Mx . Bx	relatório
	01		563,70	568,20		4,50		1		XO ₂	0,0	0,00	< 0,2
	02		567,10	570,30	-	3,20		-		02	20,9	6,69	20,90
	03		467,10	469,30		2,20		-	CO (ppm):	0	0,0000	0,00	< 0,2
	04		582,30	594,70		12,40		-		H ₂	0,0	0,00	< 0,2
	05					0,00		-	<u> </u>	N ₂	79,1	22,15 28.84	79,10
	06									Σ (g/gmol)	. nnm . 40 00	,	
	07					0,00		-	L	Nota	: ppm ÷ 10.00	U = 76	
	08					0,00		-	Volume	Acetona - reci	inoração am	netra (ml.)	95
		gua coletada	(a)			22,30		-	voiuiile /	ncetoria - reci	aperação am	oud (IIIL)	80
	massa de d	gaa coleidud	197		L	22,30		_		N!	Flanges]	Pontos
										Chaminés gulares	- iunges	x	-
									1		1		1

DIMENSÕES FÍ	SICAS		OBSERVAÇÕES				RESPONSÁVEIS	
AB (m)	4,30							WEMERSON DE CASTRO GANDRA
BC (m)	0,85							TÉCNICO RESP. PELA AMOSTRAGEM
Ø (m)	0,42	-						MARILENE RODRIGUES
C (m)	-	-						CONFERÊNCIA E TRANSPOSIÇÃO DOS DADOS
L (m)	•		TEMPERATURA DA SAÍDA DO CONDENSADOR DE DIOXINAS/SVOC					JUCÉLIO BRUZZI
N° Pontos sugerido	8	T1	T1 - T2 - T3 - T4 -				APROVAÇÃO DOS RESULTADOS	


SISTEMA DE GESTÃO DA QUALIDADE - ECOAR MONITORAMENTO AMBIENTAL

Página 01 de 02

ANEXO B - CERTIFICADOS DE CALIBRAÇÃO DOS EQUIPAMENTOS CRÍTICOS UTILIZADOS

EA250-23 FO-56-06 Página 12 de 15

AMBTECH SERVIÇOS ESPECIAIS LTDA

NPJ: 03.580.260/0001-71 - INSC, EST.: 062.059222

	014-3. 05.560.260/0001-71	-	INSC. EST.: 06	2.059222.00-51		
RELATÓRIO DE ENSAIO						Z
MEERTORIO DE ENSAIO			Nº	17.04.23	Pág.1/1	CRL 0801

Dados	do	cliente
-------	----	---------

Nome / Razão Social:	Ecoar Monitoramento Ambiental Ltda			
	Rua Hamacek, 122 Lucilia João Monlevade/MG	Refer	éncia	
Serviço solicitado:	Ensaio de Sonda Pitot Ensaio de Pitot Isolado Tubo Pitot S	OS nº	073/23	

Equipamento ou sistema ensaiado

Descrição:	The second secon			
	Sonda Pitot	Comprimento aprox.:	1,90m	
Código da Sonda:	SONDA 02	Código do Pitot:	ECOTP002	╣.

Informações básicas

Data da entrada:	30/03/2023	Data do ensaio:			THE	-	
Temperatura ambiente: °C		Data do ensalo.	04/04/2023	Pressão atmosférica:	865	mbar	l
	20,1			Umidade Relativa:	58	% UR	ı

Padrões de referência e metodologia empregada

Padrão	04.5				
	Coaigo	Certificado nº	Válido até	Rastreabilidade	
Pitot Padrão Dwyer	AT-PP02	192 629-101		Tra sti ea Dilidade	
Manômetro			set-25	RBC - CAL 0162	
	A1-1P10	CER40994/22	iul-25		
Paquímetro	Código AT-PP02 AT-TP10 AT-PQ02 ABNT NBR 12020:1992 -	017474/2021		RBC - CAL 486	
Método empregado :	A DAIR AND A CO.		ago-24	RBC - CAL 225	
. Helodo empregado :	ABN I NBR 12020:1992 -	item 5.2 - em 03 velocida	ides / Instrução de trabalh	o IT07 Rev 00	
				O TIV/ NEV.US	

Resultados obtidos:

Velocidade	Tran	по А	Tran	10 B						
do ar		> Desvio	11011	1	Desvios	Cps	incerteza	Press	ões médias o	obtidas
± m/s	Cps (A)	Cps-Cps(A)	Cps (B):	> Desvio	entre (A) e (B)	médio	U	Tramo A	Tramo B	Δp padrão
6	0,8115	0.001	0,8137	Cps-Cps(B)		1		ΔPs (r	nmH2O)	mmH2Q
15	0.7990	0,000	0,8051	0,001	0,002	0,8126	0,012	3,6	3,6	2,4
23	0,7898	0,000	0,7988	0,000	0,006	0,8021	0,012	19,9	19,6	12,8
		0,000	0,7900	0,000	0,009	0,7943	0,011	46,9	45.9	29.9

A incerteza expandida (U) é estimada para um nível de confiança de 95% e fator de abrangência $\,$ K \simeq 2

Condições de Aprovação (item 5.2.5.1.e / 5.2.5.2.e - NBR 12020)

- 1 Os desvios nos tramos A e B devem ser =< 0,01
- 2 A diferença entre Cps (A) e Cps (B) deve ser =< 0,01
- 3 Característics e limites de desalinhamentos, atendidos (S ou N)?

4 - Equipamen	to ne	cessi	tou de ajuste	(S ou N) ?
NÃO	se	SIM	RAE nº:	

OBS

SIM

Avaliaçã	o do Pitot	
Aprovado	Reprovado	Para o Pitot manter o l características deve
Х		conforme definido em

Para o Priot manter o fator de calibração - Cps, as características devem ser mantidas na sonda, conforme definido em norma, caso contrário o Cp será alterado e esta deverá ser recalibrada.

Nova Lima, 5 abril, 2023

Ricardo Soares Santos Gerente do Laboratório

SISTEMA DE GESTÃO DA QUALIDADA	
☑ APROVADO	
REPROVADO	
UTILIZAR SOB CONCESSÃO	
RESP. 10,04, 23	

Este relatório atende aos requisitos de acreditação da Cgcre, que avaliou a competência do laboratório Ambtech

Os resultados apresentados neste documento têm significação restrita e se aplicam ao objeto detalhado, em questão. A reprodução deste documento para outros fins só poderá ser feita integralmente, sem nenhuma alteração ou rasura.

Rua Hudson, 665 Bairro Jardim Canadá CEP 34.007-640 Nova Lima/MG Tel.: 31-3288.3692 / 31 9 9500-3692

VIA DO CONTRATANTE

ANEXO C - ANOTAÇÃO DE RESPONSABILIDADE TÉCNICA (ART) - CREA MG

		Página 1/1
Anotação de Responsabilidade Técnica - ART Lei nº 6.496, de 7 de dezembro de 1977	CREA-MG	ART de Cargo ou Função
Conselho Regional de Engenharia e Agronomia de Minas Gerais		14201600000003027008
1. Responsável Técnico JUCELIO FRAGA BRUZZI		
itulo profissional:		RNP: 1415096252
NGENHEIRO AMBIENTAL;		Registro: 04.0.0000200472
2. Contratante		
Contratante: ECOAR MONITORAMENTO AMBIENTAL LTDA		CNPJ: 05.770.537/0001-54
ogradouro: RUA HAMACEK		Nº: 00122
	Bairro: LUCÍLIA	
idade: JOÃO MONLEVADE	UF: MG	CEP: 35930-240
po de contratante: PESSOA JURÍDICA DE DIREITO PRIVADO		
3. Vinculo Contratual		
nidade administrativa: ECOAR MONITORAMENTO AMBIENTAL LTI	DA.	
ogradouro: RUA HAMACEK		Nº: 000122
Take Manusus DE	Bairro: LUCÍLIA	25222 242
idade: JOÃO MONLEVADE ata de início: 12/07/2003	UF: MG	CEP: 35930-240
ipo de vínculo: SÖCIO lentificação do cargo/função: GERENTE TÉCNICO		
4. Attividade Técnica		
4. Atividade Técnica		Quantidade: Unidade:
A mudança de cargo ou função e	xige o registro de nova AR	г
5. Observações		
6. Declarações		
7. Entidade de Classe SSOCIAÇÃO DOS ENGENHEIROS DE JOÃO MONLEVADE - ; 8. Assinaturas seclaros serem verdadeiras as informações acima João Monlevade , 01 de Julho de 2016 Local data	A autenticidade deste documer www.crea-mg.org.br ou www.cr	nto pode ser verificada no site onfea.org.br RT será de responsabilidade do profissional e d
UCELIO FRAGA BRUZZI -RNP:1415096252		
<u></u>		CREA-MG
SCOAR MONITORAMENTO AMBIENTAL LTDA CNPJ: 05.770.537/0001-54	www.crea-mg.org.br 0800	OSTATOR CREA-MG

- A Ecoar Monitoramento Ambiental Ltda adota como regra de decisão para a declaração da conformidade de seus resultados, não considerar a incerteza dos ensaios e amostragens para declarar se um resultado está conforme ou não com uma Legislação Ambiental, Lei, Decreto, Regulamento, Nota Técnica ou similar.
- Os planos de amostragens realizadas pela Ecoar Monitoramento Ambiental Ltda possuem o mesmo número de identificação das amostras e estão disponíveis, se requeridos. Os métodos de amostragens estão contidos no campo Metodologia Empregada.
- As incertezas expandidas de medição para todos os ensaios do escopo de acreditação da Ecoar foram calculadas de acordo com os métodos de referência e estão à disposição para consulta a qualquer momento por parte de nossos clientes.
- As condições ambientais (temperatura de entrada e saída do gasômetro) que influenciam nos resultados, são monitoradas e registradas na planilha de amostragem, e são utilizadas para a correção do volume de gás amostrado para a condições normais de temperatura e pressão CNTP.
- Nenhuma das informações contidas nesse relatório pode ser reproduzida ou alterada sem o acordo formal da Ecoar Monitoramento Ambiental Ltda. Este relatório não pode ser reproduzido de forma parcial, somente na íntegra.
- Os resultados se referem somente às amostras analisadas. As amostras coletadas pelo cliente, são analisadas conforme recebidas.
- Todas as informações do cliente, referentes a este trabalho estão protegidas por nossa Política de Confidencialidade.

Aprovado por:

Jucélio Bruzzi

CREA-MG: 200472/D

CRQ-MG: 02.406.382 - 2ª Região

Engenheiro Ambiental Gerente Técnico Signatário Autorizado